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Abstract
The IEEE Spoken Language Technology Workshop (SLT) 2021
Alpha-mini Speech Challenge (ASC) is intended to improve re-
search on keyword spotting (KWS) and sound source location
(SSL) on humanoid robots. Many publications report signifi-
cant improvements in deep learning based KWS and SSL on
open source datasets in recent years. For deep learning model
training, it is necessary to expand the data coverage to improve
the model robustness. Thus, simulating multi-channel noisy and
reverberant data from single-channel speech, noise, echo and
room impulsive response (RIR) is widely adopted. However,
this approach may generate mismatch between simulated data
and recorded data in real application scenarios, especially echo
data. In this challenge, we open source a sizable speech, key-
word, echo and noise corpus for promoting data-driven meth-
ods, particularly deep-learning approaches on KWS and SSL.
We also choose Alpha-mini, a humanoid robot produced by
UBTECH equipped with a built-in four-microphone array on its
head, to record development and evaluation sets under the ac-
tual Alpha-mini robot application scenario, including environ-
mental noise as well as echo and mechanical noise generated by
the robot itself for model evaluation. Furthermore, we illustrate
the rules, evaluation methods and baselines for researchers to
quickly assess their achievements and optimize their models.

Index Terms— keyword spotting, sound source location,
noise and echo, deep learning, datasets

1. Introduction
Robots, as useful assistants and playmates, are becoming

more and more popular in people’s daily life. As the first chain
of human-robot speech interaction (HRSI), the accuracy and ef-
ficiency of speech interaction have an important impact on the
interaction effectiveness and user experience. In typical HRSI
scenarios, robot always work in a very complex acoustic scene,
including users’ voices, background noise, and the voice of the
robot itself (echo and mechanical noise). To activate the speech
interactions between users and devices, a standby keyword spot-
ting (KWS) module, also known as wake-up word detection, is
particularly important to detect predefined keyword in the audio
stream to trigger voice interactions. A good KWS system needs
to maintain high robustness with low false rejections and false
alarms under the constraint of low computation cost. Mean-
while, accurate sound source location (SSL) can provide essen-
tial cues for subsequent beamforming, speech enhancement and

speech recognition algorithms. In home environments, the fol-
lowing interferences pose great challenges to HRSI: 1) various
types of noises from TV, radio, other electrical appliances and
human talking, 2) echoes from the loudspeaker(s) equipped on
the robot, 3) room reverberation and 4) noises from the mechan-
ical movements of the robot. These noise interferences compli-
cate KWS and SSL to a great extent. Thus, robust algorithms
are highly in demand.

Conventional KWS system has been developed maturely,
including large vocabulary continuous speech recognition
(LVCSR) based lattice search [1, 2, 3], hidden Markov model
(HMM) based keyword-filler method [4, 5, 6], discriminative
models based on large-margin formulation or recurrent net-
works and query-by-example (QbyE) based template matching
approaches [7, 8, 9, 10, 11]. Recently, with the development of
deep learning and its successful applications, deep KWS frame-
works have been introduced [12, 13, 14, 15, 16, 17, 18]. In
the deep KWS family, an acoustic model is trained to predict
the sub-word of keyword and a posterior handling method is
followed to generate a confidence score of the whole keyword.
These approaches are highly attractive to deploy on edge-device
with small footprint and low latency, as the size of the model
can be easily controlled and no complicated graph-search is in-
volved. Besides, attention-based end-to-end method has also
been introduced to the KWS task [19] and further performance
improvement has been observed which significantly simplifies
the model structure and the decoding process. Another trick
to boost KWS performance recently is to employ a two-stage
strategy, where a first-stage detector provides candidates to the
second stage to make the final decision [20, 21].

SSL has been studied for decades. Conventionally, general-
ized cross correlation with phase transform (GCC-PHAT) [22],
steered-response power with phase transform (SRP-PHAT) [22]
and multiple signal classification (MUSIC) [23] are among
the most popular approaches. These traditional signal pro-
cessing based methods are analytically derived with the as-
sumptions about the signal, noise and environment such as
the noise is white and the SNR is higher than 0dB, etc. Re-
cently, Lin et al. investigated the reverberation-robust localiza-
tion approach of using redundant information of multiple mi-
crophone pairs and proposed the OnsetMCCC and MCC-PHAT
methods [24, 25]. With the rapid development of deep learn-
ing based speech enhancement and separation, several methods
were shown to achieve promising performance on the SSL task.
In [26, 27], the authors estimated the masks of target speech to
improve the robustness of conventional cross-correlation-based,
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beamforming-based and subspace-based algorithms for SSL es-
timation in environments with strong noise and reverberation.
In [26, 28], the authors utilized the ideal ratio mask (IRM)
and its variants and considered direct sound as the target sig-
nal, which leads to high localization accuracy.

Although many approaches have addressed the problem of
KWS and SSL, there have been only a few studies evaluate the
ability of KWS and SSL on humanoid robots with challeng-
ing acoustic conditions. On the other hand, large-scale dataset
on robot for KWS or SSL is still extremely deficient. He et
al. proposed multiple speaker detection and localization dataset
recorded by Pepper robot [29]. Lollmann et al. published
acoustic source localization and tracking dataset on LOCATA
challenge [30]. However, these datasets neither consider the
scenario of echo nor have good coverage of different room sizes
and reverberation scenarios. Thus it is necessary to release a siz-
able dataset for KWS and SSL based on humanoid robot and a
common platform to better tackle the problem of HSRI in real
application scenarios.

In this paper, we address the necessity of solving the prob-
lem of KWS and SSL on humanoid robot in noisy and echo
scenario. It is expected that researchers from both academia
and industry can promote the problem solving through this chal-
lenge. The rest of the paper is organized as follows. In Section
2, we give detailed introduction of dataset to release. In Sec-
tion 3 and Section 4, the details of rules, evaluation method and
baselines of KWS and SSL tracks are introduced. Other infor-
mation about participating the challenge is available in Section
5. A conclusion is drawn in Section 6.

2. Datasets
Our goal of releasing the open source dataset in Table 1

is to ensure the fair training resources and evaluation platform
for researchers. The training data includes single channel key-
word, speech, noise, echo data and recorded echo and mechan-
ical noise of Alpha-mini. The development and evaluation sets
contain keyword, speech, noise, echo and mechanical noise data
recorded by Alpha-mini. During recording, we play the clean
and noise signals through Hi-Fi loudspeakers and use the built-
in microphone array of Alpha-mini to record. As for the echo
data, various types of audio played by Alpha-mini built-in dual-
loudspeaker is recorded by the built-in microphone array on the
head of the Alpha-mini. The mechanical noise is generated by
movable joints of Alpha-mini and recorded by the same built-in
microphone array. Typical recording scenes are shown in Fig. 1.
The robot is equipped with four microphones located on its head
and two loudspeakers located on both sides of its waist. The dis-
tance between two neighbor microphones and two loudspeakers
are 3.7 cm and 6.3 cm, respectively. The vertical distance be-
tween the loudspeakers and the plane of microphone array is
13 cm, as shown in Fig. 2. All recorded data are six-channel
signal, where the first four channels are recorded signals and
the rest two channels are reference signals played by the dual-
loudspeakers of Alpha-mini.

Here we give the detailed illustration of subsets in Table 1:
• Keyword-Train: ‘Wukong Wukong’ wake-up word speech

data provided by UBTECH recorded in anechoic room in-
cluding voices from both adults and children, used for KWS
model training.

• Speech-Train: The open-source AISHELL-1 [31] training
set is processed by deep complex convolutional recurrent net-
work (DCCRN) [32] and weighted prediction Error (WPE)
algorithm [33], resulting in enhanced and dereverbed ‘clean’

Alpha-mini

Loudspeaker to
play keyword

Loudspeaker
to play noise

Alpha-mini

Loudspeaker
to play speech

and noise

Fig. 1: The typical recording scenes.

and ‘dry’ version, which can be used for KWS model and
SSL model training.

• Noise-Train: The noise data comes from 1) songs and pure
music, 2) noise set of DNS challenge [34] and 3) various
kinds of indoor noise including but not limited to clicking,
keyboard, door opening/closing, fan, bubble noise, etc. This
set can be used in KWS model and SSL model training.

• Echo-Train: The data released for echo simulation, which
includes 1) songs, pure music, news broadcasting, people
crosstalk and 2) speech generated by the Alpha-mini text-to-
speech engine.

• Echo-Record: Various types of audio, played by Alpha-mini
built-in dual-loudspeakers, recorded (echo) by the Alpha-
mini built-in microphone array in a quiet room. The audio
types played by Alpha-mini are the same as Echo-Train but
the audio data has no overlap.

• Noise-Mech: Noise of mechanical movements generated by
the movable joints of Alpha-mini, recorded by the Alpha-
mini built-in microphone array in a quiet room.

• KWS-Dev: Recorded keywords, noise, echo and mechani-
cal noise by Alpha-mini in two rooms. Keywords and noise
are played by two Hi-Fi loudspeakers while echo is gener-
ated by Alpha-mini at the same time. The mechanical noise
is recorded along then added to the recorded noisy and echoic
signal. The audio types of played keyword, noise, echo and
mechanical noise are the same as corresponding sets in train-
ing but audio data has no overlap. The Hi-Fi loudspeakers
are randomly placed in each room. This set is used as devel-
opment set for KWS model optimization.

• SSL-Dev: Recorded speech, noise, echo and mechanical
noise by Alpha-mini in two rooms. Speech and noise are
played by one Hi-Fi loudspeaker separately. Echo and me-
chanical noise are generated by Alpha-mini separately. Then
we mix speech, noise, echo and mechanical noise together.
The speech comes from enhanced and dereverbed ‘clean’ and
‘dry’ version of AISHELL-1 development and test set. The
audio types of played noise, echo and mechanical noise are
the same as corresponding sets in training but audio data has
no overlap. The angle between Alpha-mini and loudspeakers
covers every single degree from 1◦ to 360◦. The angle defi-
nition is illustrated in Fig. 2(a) and the straight ahead of the
robot is defined as 90◦. This set is used as development set
for SSL model optimization.

• KWS-Test: Recorded keywords, noise, echo and mechanical
noise by Alpha-mini in three rooms. Other setups are the
same as KWS-Dev. This is the evaluation set for KWS Track.

• SSL-Test: Recorded speech, noise, echo and mechanical
noise by Alpha-mini in three rooms. Other setups are the
same as SSL-Dev. This is the evaluation set for SSL Track.



Table 1: Data to release.

Dataset Subset Duration (hrs) Format Scenario
Mic-Loudspeaker
distance (metres)

Training

Keyword-Train 9.4
16kHz, 16bit,

single channel wav
- -

Speech-Train 146.1
Noise-Train 60.0
Echo-Train 28.5

Echo-Record 3.0 16kHz, 16bit,
six-channel wavNoise-Mech 8.6

Development

KWS-Dev 7.5

16kHz, 16bit,
six-channel wav

Keyword only
Keyword+Noise
Keyword+Echo

Keyworkd+Noise+Echo
Keyword+Echo+Mech

[2, 4]

SSL-Dev 20.0

Speech only
Speech+Noise
Speech+Echo

Speech+Noise+Echo
Speech+Echo+Mech

Evaluation
KWS-Eval

TBA Same as Development Same as Development [2, 5]
SSL-Eval
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270°
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Mic1Mic2

Mic3 Mic4

(a) Top view

6.3cm

1.5cm

Build-in
Loudspeaker

Build-in
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(b) Front view

13cm

1.85cm

Build-in
Loudspeaker

(c) Left view

Fig. 2: Three views of Alpha-mini robot.

3. Keyword Spotting (KWS) Track
This track is designed for KWS task. We illustrate the data

arrangement, evaluation and ranking method, rules and baseline
methods and results in this section.

3.1. Data Arragement

The data can be used in this track is shown in Table 2. Par-
ticipants can use their own room impulse response (RIR), ei-
ther collected or simulated, for data augmentation to train the
KWS model. Furthermore, Echo-Record and Noise-Mech are
provided as the reference of time-delay of echo and mechan-

ical noise of Alpha-mini, respectively. Participants can also
use these data sets during training. KWS-Dev, SSL-Dev, KWS-
Eval, SSL-Eval are six-channel recorded data. Participants can
use KWS-Dev and SSL-Dev directly without any simulation to
optimize the model.

3.2. Evaluation and Ranking

We use a combination of false reject rate (FRR) and false
alarm rate (FAR) on KWS-Eval and SSL-Eval respectively as
the criterion of the KWS performance. Suppose the evalua-
tion set has Nkey examples with keyword and Nnon-key examples
without keyword, we define FRR and FAR as follows:

FRR =
NFR

Nkey
, FAR =

NFA

Nnon-key
, (1)

where NFR is the number of examples with keyword but the
KWS system gives a negative decision andNFA is the number of
examples without keyword but the KWS system gives a positive
decision. The final score of KWS is defined as:

ScoreKWS = FRR + FAR. (2)

FRR and FAR are calculated on all examples in KWS-Eval
and SSL-Eval respectively and the final rank is ScoreKWS calcu-
lated by Eq. (2). The system has lower ScoreKWS will be ranked
higher.

KWS-Eval and SSL-Eval will not be released before orga-
nizers notify the participants about the results. Participants need
to provide the organizers with a docker image of a runnable
KWS system. The executable file in the image needs to re-
ceive the list of data in KWS-Eval and SSL-Eval and outputs
the result of KWS. The output determines whether the sample
contains keyword. If keyword exists, the sample is labeled as 1,
and 0 otherwise. A detailed technical support of the usage and
submission of docker will be provided later.



3.3. Rules

The use of any other data that is not provided by organizers
(except for RIR) is strictly prohibited. Furthermore, it is not al-
lowed to use KWS-Dev and SSL-Dev to train the KWS model.

There is no limitation on KWS model structure and model
training technology used by participants. And the KWS model
can have a maximum of 500 ms look ahead. To infer the current
frame T (in ms), the algorithm can access any number of past
frames but only 500 ms of future frames (T + 500 ms). In case
there are submitted systems with the same score, the system
with lower time delay will be given a higher ranking.

Table 2: Data arrangement for KWS Track.

Train Development Evaluation

Keyword-Train

KWS-Dev
SSL-Dev

KWS-Eval
SSL-Eval

Speech-Train
Noise-Train
Echo-Train

Echo-Record
Noise-Mech

3.4. Baseline

Front-end: We use signal-based front-end for pre-
processing. We apply frequency least mean square (FLMS)
algorithm for acoustic echo cancellation (AEC) and delay and
sum beamforming (DSBF) with SSL estimated by GCC-PHAT
on multi-channel signal to generate single-channel signal as the
input of KWS system.

Deep KWS: The first baseline is based on deep KWS
model. After pre-processing, we extract 40-dimension mel-
filterbanks feature by a window of 25ms with a shift of 10ms
as the input of deep KWS. An 8-layer dilation time-delay neu-
ral network (TDNN) [35] is used as the KWS model shown in
Fig. 3(a). The kernel size of the first four layers is 5, and 3 for
the rest. Dilation rate of these layers loops among {1, 2, 4, 8}.
There is a batch normalization (BN) layer with rectified lin-
ear unit (ReLU) activation function between each TDNN layer.
A fully connection layer (FC) is applied to map the output of
TDNN into two categories – keyword and filler. Softmax func-
tion is used to generate the posterior probability of both key-
word and non-keyword.

We use post processing in [36] to generate the keyword con-
fidence score from the posterior probabilities. The system will
wake up if the confidence exceeds a predefined threshold. First,
we smooth the raw posterior probabilities from the model over a
fixed time window of size wsmooth. Suppose pt is the raw pos-
terior probabilities of keyword at frame t, smoothing is done
by:

p
′
t =

1

t− hsmooth + 1

t∑
k=hsmooth

pk, (3)

where hsmooth = max(1, t − wsmooth + 1) is the index of
the first frame within the smooth window. Thus the confidence
score at frame t is the smoothed posterior p

′
t.

For data simulation, the RT60 of RIRs we generate ranges
from 0.2 s to 0.8 s with image method. The room size ranges
from 3 m × 3 m to 8 m × 8 m and the hight is maintained at
3 m. The mic-loudspeaker distance ranges from 1.5 m to 5 m.
Both SNR and SER range from -5 dB to 10 dB. During train-
ing, cross entropy is used as the loss function. The batch size

and the initial learning rate is set to 128 and 0.001, respectively.
We train the model for 50 epochs with Adam optimizer using
PyTorch. The result is shown in Table 3. Note that the perfor-
mance of the baseline KWS system decreases rapidly in noisy
and echo scenarios. In particular, echo poses a much bigger
challenge to the model than noise, possibly because the source
of echo is closer to the microphone thus the SER is relatively
low. Compared with noise scenario, the ScoreSSL in echo sce-
nario decreases 0.16 on average. In addition, the overall per-
formance of the KWS system is worse in the conference room
scene due to larger reverberation and mic-loudspeaker distance.

Keyword-filler: We provide another baseline based on
Kaldi Hi-Mia recipe 1. The acoustic model accepts the
mel-filterbanks feature of front-end output as input and out-
puts the posterior probabilities of probability density function-
identification (pdf-id). We extract 71-dimension mel-filterbanks
feature by a window of 25 ms with a shift of 10 ms. A 6-layer
dilation TDNN with ReLU activation function is used to get the
time domain information. Then, a fully connected layer maps
the high-dimensional representation to the posterior probabili-
ties of pdf-id. The model is trained for 2 epochs with 512 batch
size. The learning rate degradation algorithm is shown in Eq. 4)

lrj = lr0×exp(
j

S − 1
log(

lrS−1

lr0
)) j=0,...,S − 1, (4)

where S denotes the total step of training and lrj denotes the
learning rate at step j. As for language model, a decoding graph
is used to calculate confidence score of keyword from the poste-
rior probability of the acoustic model. The decoding graph only
accepts the phonemes included in the keyword and computes
the score of the keyword. The result is shown in Table 3. It is
proved again that echo, rather than noise, poses a greater im-
pact on KWS result. Furthermore, KWS performance degrades
to a great extend in larger reverberation and mic-loudspeaker
distance scenario. A complete Kaldi based baseline script will
be provided later.

4. Sound Source Location (SSL) Track
This track is designed for SSL task. We illustrate the data

arrangement, evaluation and ranking method, rules and baseline
of SSL task in this section.

4.1. Data

The data that participants can use in this track is shown in
Table 5. Participants can also use their own RIR, either col-
lected or simulated, for data augmentation to train the SSL
model. Furthermore, Echo-Record and Noise-Mech are pro-
vided as the reference of time-delay of echo and mechanical
noise of Alpha-mini, respectively. Participants can also use
these data sets during training. SSL-Dev and SSL-Eval are six-
channel recorded data. Participants can use SSL-Dev directly
without any simulation to optimize the model.

4.2. Evaluation and Ranking

We use a combination of Mean Absolute Error (MAE) and
accuracy (ACC) as the criterion of the SSL performance. With
the list of absolute errors of angle {ei} , i = 1, ...N , where N

1https://github.com/kaldi-asr/kaldi/tree/
master/egs/hi_mia/w1

https://github.com/kaldi-asr/kaldi/tree/master/egs/hi_mia/w1
https://github.com/kaldi-asr/kaldi/tree/master/egs/hi_mia/w1


Table 3: Results of KWS baseline.

Room Set Scenario
FRR Average

Set Scenario
FAR Average

Deep
KWS

Keyword-
filler

Deep
KWS

Keyword-
filler

Deep
KWS

Keyword-
filler

Deep
KWS

Keyword-
filler

Office

KWS-Dev

Keyword only 0.10 0.01

0.32 0.35 SSL-Dev

Speech only 0.02 0.03

0.19 0.14

Keyword+Noise 0.16 0.08 Speech+Noise 0.14 0.08
Keyword+Echo 0.26 0.31 Speech+Echo 0.21 0.31

Keyword+Noise+Echo 0.41 0.37 Speech+Noise+Echo 0.23 0.24
Keyword+Echo+Mech 0.30 0.36 Speech+Echo+Mech 0.27 0.16

Conference Room

Keyword only 0.13 0.14 Speech only 0.03 0.02
Keyword+Noise 0.31 0.36 Speech+Noise 0.21 0.05
Keyword+Echo 0.42 0.57 Speech+Echo 0.24 0.20

Keyword+Noise+Echo 0.62 0.64 Speech+Noise+Echo 0.24 0.14
Keyword+Echo+Mech 0.52 0.68 Speech+Echo+Mech 0.29 0.15

Table 4: Results of SSL baseline.

Set Room Scenario ACC10 (%) Average (%) ACC7.5 (%) Average (%) ACC5 (%) Average (%) MAE(◦) Average (◦)

SSL-Dev

Office

Speech only 61.67

33.69

45.49

24.23

33.96

17.78

9.80

38.50

Speech+Noise 46.25 33.40 23.68 22.17
Speech+Echo 28.96 21.32 16.04 35.64

Speech+Noise+Echo 19.65 15.28 10.97 53.37
Speech+Echo+Mech 19.72 14.93 10.97 53.88

Conference Room

Speech only 57.99 39.37 27.57 11.36
Speech+Noise 46.60 33.19 24.65 20.23
Speech+Echo 23.61 15.90 11.60 51.45

Speech+Noise+Echo 15.83 11.74 8.75 64.07
Speech+Echo+Mech 16.67 11.67 9.58 63.06

Table 5: Data arrangement for SSL Track.

Train Development Evaluation

Speech-Train

SSL-Dev SSL-Eval
Noise-Train
Echo-Train

Echo-Record
Noise-Mech

is the number of examples, we compute the MAE as:

MAE =
1

N

N∑
i=1

ei. (5)

ACC under different tolerances δ is defined as:

ACCδ =
1

N

N∑
i=1

ai, ai =

{
1 if ei 6 δ

0 otherwise
, (6)

The final score of SSL is defined as:

ScoreSSL

=(0.3×ACC10+0.35×ACC7.5+0.35×ACC5)

+(1−MAE/MAEbaseline).

(7)

The final rank is computed according to ACC under each
tolerance and MAE of all examples in SSL-Eval by Eq. (7).
The MAEbaseline of SSL-Eval will be released by organizers. The
system with higher score will be ranked higher.

SSL-Eval will not be released before organizers notify the
participants about the results. Participants need to provide or-
ganizers with a docker image of a runnable SSL system. The
executable file in the image needs to receive the list of data in
SSL-Eval and outputs the result of SSL. The output determines

the direction of speech ranges from 1◦ to 360◦. A detailed tech-
nical support of the usage and submission of docker will be pro-
vided later.

4.3. Rules

The use of any other data that is not provided by organizers
(except for RIR) is strictly prohibited. Furthermore, it is not
allowed to use SSL-Eval and Keyword-Train to train the SSL
model.

There is no limitation on the system architecture, mod-
els, training techniques and time delays. However, we encour-
age participants to develop models with better performance and
lower time delay. In case the submitted systems with the same
score, the system with lower time delay will be given higher
ranking.

4.4. Baseline

Inspired by [29, 37], we adopt a fully convolutional multi-
task framework for SSL task which takes multi-channel signal
as input and output the probability distribution of the direc-
tion of sound source. We adapt short time Fourier transform
(STFT) with 32ms frame length and 16ms frame hop to first
five channels of the raw waveform and derive its magnitude
and phase. Then we concatenate the magnitude and phase to
generate X ∈ R2C×F×T as the input of the model, where C
denotes channel number, F denotes the number of frequency
bins, T denotes the number of frames and 2 denotes magni-
tude and phase. The 3-layer temporal convolutional networks
(TCN) module uses dilated convolution network whose dila-
tion increase exponentially to get wider receptive field and more
contextual information. The details of the model is shown in
Fig. 3(b). Multi-task is adopted to predict both the SSL and
speech/non-speech (SNS) likelihood. The desired SSL output
values are the maximum of Gaussian functions centered at the



DOAs of the ground truth source:

pSSL
i =

{
maxθ∈Θexp(−d(θi, θ)

2/σ2) 16 i6360

0 otherwise
, (8)

where Θ = Θs ∪ Θn is the union of ground truth speech and
noise DOAs, σ = 45◦ is the parameter to control the width of
the Gaussian curves, d(·, ·) denotes the distance between two
angles. The desired SNS output values are the one-hot value
depend on whether the nearest source is speech or noise:

pSNS
i =

{
1 if the nearest source is speech
0 otherwise

. (9)

The loss function is defined as the mean square error (MSE)
between estimated and ground truth SSL and SNS:

Loss =
∥∥∥pSSL − p̂SSL

∥∥∥2

2
+
∥∥∥pSNS − p̂SNS

∥∥∥2

2
, (10)

where pSSL, p̂SSL,pSNS, p̂SNS ∈ R1×360. During evaluation, the
result of speaker location is defined by:

θ̂ = argmax
16i6360

(p̂SSL
i · p̂SNS

i ). (11)

All hyper-parameters for data simulation are the same as
KWS Track. We train the model for 20 epochs with Adam opti-
mizer using PyTorch. Initial learning rate is set to 0.001 and will
halve if no improvement on SSL-Dev. The result of baseline
is shown in Table 4. It is worth noting that compared with the
noise interference in far-field, the echo in near-field has a greater
impact on the accuracy of SSL. Compared with Speech+Noise
scenario, the ACC decreases 15.06 % and MAE increases
44.69◦ on average in Speech+Echo scenario. Furthermore,
all results of Speech+Noise+Echo and Speech+Echo+Mech are
very close, which indicates that mechanical noise also poses ap-
parent impact on SSL accuracy.

T

F(40)

5 Conv1D, dilation 2^i, (i=0,1,2,3), ch 128

BatchNorm

ReLU

TDNN
module1

×4

3 Conv1D, dilation 2^i, (i=0,1,2,3), ch 128

BatchNorm

ReLU

TDNN
module2

×4

Dropout

FC

Softmax

T

output units(2)

(a) Deep KWS baseline.

F(257)
T

C(10)

1×7 conv, stride(1,3), ch 32

1×5 conv, stride(1,2), ch 128

1×1 conv, ch 256

3×3 conv, dilation 2^i, (i=0,...n-1), ch 256

1×1 conv, ch 256

Dilated
Convolution

× n

1×1 conv, ch 256 1×1 conv, ch 256

F(40)
TDOA(360)

F(40)
TDOA(360)

swap axes swap axes

DOA(360)
TF(40)

DOA(360)
TF(40)

1×1 conv, ch 1
average on time axes

DOA(360) DOA(360)

SSL Likelihood SNS Likelihood

1×1 conv, ch 1
average on time axes

(b) SSL baseline.

Fig. 3: Model architecture of Deep KWS and SSL baseline.

5. Important dates
• September 27th, 2020: Registration due.
• September 30th, 2020: Release of the training and develop-

ment set.
• November 22nd, 2020: Deadline for participants to submit

docker mirror.
• December 6th, 2020: Organizers will notify the participants

about the results.
• December 27th, 2020: Working note report deadline.
• January 19th-22nd, 2021: 2021 IEEE SLT Workshop date.

6. Conclusions
The IEEE SLT 2021 ASC is intended to promote research

on KWS and SSL on humanoid robots in noise and echo sce-
narios. We provide train, development and evaluation datasets
for participants to train and evaluate the model, as well as rules,
evaluation methods and baselines as reference. It is expected
that researchers from both academia and industry can advance
the problem solving through this challenge.
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