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ABSTRACT

In this paper, we propose multi-band MelGAN, a much faster
waveform generation model targeting to high-quality text-to-
speech. Specifically, we improve the original MelGAN by the
following aspects. First, we increase the receptive field of the
generator, which is proven to be beneficial to speech genera-
tion. Second, we substitute the feature matching loss with the
multi-resolution STFT loss to better measure the difference
between fake and real speech. Together with pre-training, this
improvement leads to both better quality and better training
stability. More importantly, we extend MelGAN with multi-
band processing: the generator takes mel-spectrograms as in-
put and produces sub-band signals which are subsequently
summed back to full-band signals as discriminator input. The
proposed multi-band MelGAN has achieved high MOS of
4.34 and 4.22 in waveform generation and TTS, respectively.
With only 1.91M parameters, our model effectively reduces
the total computational complexity of the original MelGAN
from 5.85 to 0.95 GFLOPS. Our Pytorch implementation can
achieve a real-time factor of 0.03 on CPU without hardware
specific optimization.

Index Terms— text-to-speech, generative adversarial
networks, speech synthesis, neural vocoder

1. INTRODUCTION

In recent years, neural network based waveform generation
models have witnessed extraordinary success, which benefits
tex-to-speech (TTS) systems with high-quality human-parity
sounding, significantly surpassing speech generated with the
conventional vocoders. Most high-fidelity neural vocoders
are autoregressive (AR), such as WaveNet [1], WaveRNN [2],
SampleRNN [3], etc. AR models are serial in nature, which
relies on previous samples to generate current samples to
model audio long-term dependencies. Although they can
produce near-perfect wave samples, their generation effi-

* Lei Xie is the corresponding author. This work was supported
by the National Key Research and Development Program of China
(No.2017YFB1002102).

ciency is inherently low, which limits their practical use in
efficiency-sensitive and real-time TTS applications.

AR models have been recently modified to speed up their
inference [4, 5, 6]. Two approaches are very competitive, both
of which are variants of WaveRNN [2]. In [6], a multi-band
WaveRNN was proposed with over 2x speed-up in inference.
A full-band audio was divided into four subbands, and by pre-
dicting the four subbands at the same time using the same
network, the parameters of WaveRNN were significantly re-
duced. In [4, 5], the original WaveRNN structure was simpli-
fied by introducing linear prediction (LP), resulting in LPC-
Net. Combining LP with RNNs can significantly improve the
efficiency of speech synthesis.

Recently, significant efforts have been made to the devel-
opment of non-AR models. Because these models are highly
parallelizable and can fully take advantages of modern deep
learning hardware, they are extremely faster than their AR
counterparts. One family relies on knowledge disillusion, in-
cluding Parallel WaveNet [7] and Clarinet [8]. Under this
framework, the knowledge of an AR teacher model is trans-
ferred to a small student model based on the inverse auto-
regressive flows (IAF) [9]. Although the IAF students can
synthesize high-quality speech with a reasonable fast speed,
this approach requires not only a well-trained teacher model
but also some strategies to optimize the complex density dis-
tillation process. The student is trained using a probability
distillation objective, along with additional perceptual loss
terms. In the meanwhile, such models rely on GPU infer-
ence in order to achieve a low real-time factor (RTF)* be-
cause of the huge amount of model parameters. The other
family is flow-based models [10, 11, 12], including WaveG-
low [13] and FloWaveNet [14]. They use a single network
with the likelihood loss function only for training. As their
inference process is parallel, the RTF is obviously lower as
compared with the AR models. But it requires a week of
training on eight GPUs to achieve good quality for a single
speaker model [13]. While inference is fast on GPU, the large
size of the model makes it impractical for applications with a

*The real-time factor indicates the time required for the system to synthe-
size a one-second waveform, in seconds.
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constrained memory usage.
Generative adversarial networks (GANs) [15] are popular

models for sample generation, which have been the dominat-
ing paradigm for image generation [16, 17], image-to-image
translation [18] and video-to-video synthesis [19]. There
were several early attempts applying GANs to audio genera-
tion tasks, but achieved limited success [6]. Recently, there
has been a new wave of modeling audio using GANs, as non-
AR models targeting to fast audio generation. Specifically,
MelGAN [20], Parallel WaveGAN [21] and GAN-TTS [22]
have shown promising performance on waveform generation
tasks. They all rely on an adversarial game of two networks:
a generator, which attempts to produce samples that mimic
the reference distribution, and the discriminator, which tries
to differentiate between real and generated samples. The in-
put of MelGAN and Parallel WaveGAN is mel-spectrogram,
while the input of GAN-TTS is linguistic features. Hence
MelGAN and Parallel WaveGAN are considered as neural
vocoders, while GAN-TTS is a stand-alone acoustic model.
Meanwhile, Parallel WaveGAN and MelGAN both use auxil-
iary loss, i.e., multi-resolution STFT loss and feature match-
ing loss, respectively, so they converge significantly faster
than GAN-TTS. Impressively, the pytorch implementation
of MelGAN runs at more than 100x faster than real-time on
GPU and more than 2x faster than real-time on CPU. On the
contrast, the real-time factor of Parallel WaveGAN is limited
because of the stacking of network layers. According to the
provided demos, the speech synthesized by MelGAN and
Parallel WaveGAN is not satisfactory with audible artifacts.

In this paper, we propose a multi-band MelGAN (MB-
MelGAN) for faster waveform generation and high-quality
TTS. Specifically, we made several improvements on Mel-
GAN to better facilitate speech generation. First, the recep-
tive field has expanded to about twice of that in the original
MelGAN, which is proven to be beneficial to speech gen-
eration, leading to obvious quality improvement. Second,
we substitute the feature matching loss with more mean-
ingful multi-resolution STFT loss as in Parallel WaveGAN,
and combine with pre-training to further improve the speech
quality and training stability. Third, to further improve the
speech generation speed, we propose the multi-band Mel-
GAN which can effectively reduce the computational cost.
Similar to multi-band WaveRNN [6], we exploit the sparse-
ness of neural network and adopt a single shared network for
all sub-band signal predictions. Our study particularly shows
that combing the sub-band loss with the full-band loss is
beneficial to generation quality. The proposed MB-MelGAN,
which has only 1.91M model parameters, effectively reduces
the total computational complexity from 7.6 GFLOPS to 0.95
GFLOPS. Under the premise of obtaining 4.34 MOS, our
Pytorch implementation can achieve a RTF of 0.03 on CPU
without hardware specific optimization. The proposed MB-
MelGAN vocoder further benefits end-to-end TTS with high
quality speech generation performance. Audios can be found
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Fig. 1: Multi-band MelGAN Architecture.

from: http://yanggeng1995.github.io/demo.

2. THE MODEL

Figure 1 illustrates the proposed multi-band MelGAN (MB-
MelGAN), which is evolved from the basic MelGAN [20],
following the general adversarial game between generator
and discriminator. In MB-MelGAN, the generator network
(G) takes mel-spectrogram as input to generate signals in
multiple frequency bands instead of full frequency band in ba-
sic MelGAN. The predicted audio signals in each frequency
band are upsampled first and then passed to the synthesis
filters. The signals from each frequency band after synthesis
filter are summed back to full-band audio signal. Then the
discriminator network (D), in both basic MelGAN and the
MB-MelGAN, treats full-band signal as input and use sev-
eral discriminators to distinguish features originated from the
generator in different scales.

2.1. Basic MelGAN

In the MelGAN generator [20], a stack of transposed convo-
lution is adopted to upsample the mel sequence to match the
frequency of waveforms. Each transposed convolution is fol-
lowed by a stack of residual blocks with dilated convolutions
to increase the receptive field, as shown in the upper box in
Figure 1. Using multiple discriminators is essential to the suc-
cess of MelGAN, as single discriminator will produce metal-
lic audio [20]. Multiple discriminators at different scales are
motivated from the fact that audio has fine-grained structures

http://yanggeng1995.github.io/demo


at different levels and each discriminator intends to learn fea-
tures for different frequency range of audio. The multi-scale
discriminators share the same network structure to operate on
different audio scales in frequency domain. Specifically, with
K discriminators, basic MelGAN conducts adversarial train-
ing with objectives as:

min
Dk

Ex

[
(Dk(x)− 1)2

]
+ Es,z

[
Dk(G(s, z))

2
]

(1)

min
G

Es,z

[
K∑

k=1

Dk(G(s, z)− 1)2

]
(2)

whereDk is the kth discriminator, x represents the raw wave-
form, s means the input mel-spectrogram and z indicates the
Gaussian noise vector.

Basic MelGAN uses feature matching loss to minimize
the L1 distance between the discriminator feature maps of
real and synthetic audio at each intermediate layer of all dis-
criminator blocks:

L(G,Dk) = Ex,s[

T∑
i=1

1

Ni

∥∥∥D(i)
k (x)−D(i)

k (G(s))
∥∥∥
1
] (3)

where D(i)
k is the feature map output of the ith layer from the

kth discriminator block, andNi is the number of units in each
layer. Hence the final training objectives of basic MelGAN is:

min
G

(Es,z[

K∑
k=1

(Dk(G(s, z))− 1)2] + λ

K∑
k=1

L(G,Dk)). (4)

2.2. Proposed Multi-band MelGAN

As discussed above, the original MelGAN uses latent features
of the discriminator at different scales as a potential speech
representation to calculate the difference between true and
fake speech in Eq. (3). Although feature matching opera-
tion is helpful to stabilize the whole network, we find it is
difficult to measure the differences between the potential fea-
tures of true and fake speech, which causes the convergence
process extremely slow. To solve this problem, we adopt
the multi-resolution STFT loss, which has been proven to be
more effective to measure the difference between fake and
real speech [21, 23, 24].

For a single STFT loss, we minimize the spectral conver-
gence Lsc and log STFT magnitude Lmag between the tar-
get waveform x and the predicted audio x̃ from the generator
G(s):

Lsc(x, x̃) =
‖|STFT (x)| − |STFT (x̃)|‖F

‖|STFT (x)|‖F
(5)

Lmag(x, x̃) =
1

N
‖log|STFT (x)| − log|STFT (x̃)|‖1 (6)

where ‖·‖F and ‖·‖1 represent the Frobenius and L1 norms,
respectively. |STFT (·)| indicates the STFT function to com-
pute magnitudes andN is the number of elements in the mag-
nitude.

For the multi-resolution STFT objective function, there
are M single STFT losses with different analysis parameters
(i.e., FFT size, window size and hop size). We average the M
operations through

Lmr stft(G) = Ex,x̃[
1

M

M∑
m=1

(Lm
sc(x, x̃) + Lm

mag(x, x̃))].

(7)
For the full-band version of our MelGAN (named as

FB-MelGAN), we replace the feature matching loss with
the multi-resolution STFT loss. Hence the final objective
becomes

min
G

Es,z[λ

K∑
k=1

(Dk(G(s, z))−1)2]+Es[Lmr stft(G)]. (8)

For the multi-band MelGAN (MB-MelGAN), we con-
duct multi-resolution STFT in both full-band and sub-band
scales. The final multi-resolution STFT of our MB-MelGAN
becomes

Lmr stft(G) =
1

2
(Lfull

fmr stft(G) + Lsub
smr stft(G)) (9)

where Lfull
fmr stft and Lsub

smr stft are the multi-resolution STFT
loss in full-band and sub-band, respectively.

In detail, the proposed MB-MelGAN adopts a single
generator for the prediction of all sub-bands signals. The
shared generator takes mel-spectrogram as input and predicts
all sub-bands simultaneously for sub-band multi-resolution
STFT calculation, where the sub-band target waveforms are
obtained through an analysis filter. Then we combine all sub-
band audio signals into full-band scale through a synthesis
filter to calculate full-band multi-resolution STFT loss with
target full-band audio. We follow the method in [6] to design
the analysis and synthesis filters. Finally, we summarize the
training procedure as follows.

1) Initialize G and D parameters;

2) If FB-MelGAN, then pre-trainG using Lmr stft(G) in
Eq. (7), until G converges;

If MB-MelGAN, then pre-train G using Lmr stft(G)
in Eq. (9), until G converges;

3) Train D with Eq. (1);

4) Train G with Eq. (8);

5) Loop 3) and 4) until the whole G-D model converges.

Note that the D network only presents in the model training,
which is ignored in the waveform generation stage.



3. EXPERIMENTS

3.1. Experimental Setup

For experiments, we use an open-source studio-quality cor-
pus† from a Chinese female speaker, which contains about
12 hours audio at 16kHz sampling rate. We leave out 20
sentences from the corpus for testing. We extract mel-
spectrograms with 50 ms frame length, 12.5 ms frame shift,
and 1024-point Fourier transform. The extracted spectrogram
features are normalized to obey standard normal distribution
before training. For evaluation, we adopt mean opinion score
(MOS) tests to investigate the performance of the proposed
methods. There are 20 native Chinese speakers evaluating the
speech quality.

3.2. Model details

Table 1 shows the detailed structure of our improved Mel-
GAN, for both full-band (FB) and multiband (MB) versions.
They follow the general structure of basic MelGAN [20] but
with several modifications. We follow the method in [6] for
multi-band processing, in which a stable and efficient filter
bank – pseudo quadratue nirror filter bank (Pseudo-QMF) –
is adopted. Finite impulse response (FIR) analysis/synthesis
filter order of 63 is chosen for uniformly spaced 4-band im-
plementations.

Generator. As for the upsampling module in our MB-
MelGAN, 200x upsampling is conducted through 3 upsam-
pling layers with 2x, 5x and 5x factors respectively because of
predicting 4 sub-bands simultaneously, and the output chan-
nels of the 3 upsampling networks are 192, 96 and 48, respec-
tively. Each upsampled layer is a transposed convolutional
whose kernel-size being twice of the stride. FB-MelGAN has
a slightly difference upsampling structure. Importantly, dif-
ferent from the basic MelGAN [20], we increase the receptive
field by deepening the ResStack layers. We find that expand-
ing receptive field to a reasonable size is helpful to improve
the quality of speech generation, with a small model com-
plexity increase but later compensated by introducing multi-
band operations. Specifically, each residual dilated convolu-
tion stack (ResStack) has 4 layers with dilation 1, 3, 9 and
27 with kernel-size 3, having a total receptive field of 81
timesteps (in contrast with 27 in basic MelGAN [20]). The
output channel of the last convolution layer is 4 to predict 4-
band audio or 1 to predict full-band audio.

Discriminator. FB-MelGAN and MB-MelGAN have
the same discriminator structure which takes full-band audio
(summed from 4 sub-band signals for MB-MelGAN) as input.
Slightly different from the basic MelGAN, each discrimina-
tor block has 3 strided convolution (4 in basic MelGAN)
with stride 4. We see no negative impact on performance
with this simplification. Same with the basic MelGAN, we

†Available at: www.data-baker.com/open_source.html

Table 1: Details of MB/FB-MelGAN model.

Model Layer MB FB

Generator

Conv1d (pad)
IReLU (0.2) 7×1, 384 7×1, 512

upsample
ResStack

IReLU (0.2)

×2, 192
192

×8, 256
256

×5, 96
96

×5, 128
128

×5, 48
48

×5, 64
64

Conv1d (pad)
Tanh 7×1, 4 7×1, 1

Discriminator
block

Conv1d (pad)
IReLU (0.2)

15×1, 16
41×4, groups=4, 64

41×4, groups=16, 256
41×4, groups=64, 512

5×1, 512
Conv1d (pad) 3×1, 1

Table 2: The parameters of multi-resolution STFT loss for
full-band and multi-band, respectively. A Hanning window is
applied before the FFT process.

FFT size Window size Hop size

Full-band
1024 600 120
2048 1200 240
512 240 50

Multi-band
384 150 30
683 300 60
171 60 10

adopt a multi-scale architecture with 3 discriminators that
have identical network structure but run on different audio
scales: D1 operates on the scale of raw audio, while D2
and D3 operate on raw audio downsampled by a factor of 2
and 4 respectively. The multi-resolution STFT loss runs on
different SFTF analysis parameters, as shown in Table 2.

Training. The initial learning rate of G and D is both set
to 1e−4 for all models for the Adam optimizer [25]. We also
conduct weight normalization for all models. Model training
is performed on a single NVIDIA TITAN Xp GPU, where the
batch size for the basic/FB- MelGAN and MB-MelGAN is set
to 48 and 128, respectively. Each batch randomly intercepts
one second of audio. Since we find pre-training is effective for
model convergence, we apply pre-training on the generator
in the first 200K steps. The learning rate of all models is
halved every 100K steps until 1e−6. For models using feature
matching loss, we set λ = 10 in Eq. (4), while for models using
multi-resolution STFT loss, we set λ = 2.5 in Eq. (8).

3.3. Evaluation

Improvements on basic MelGAN. We first evaluated the
proposed improvements on MelGAN which runs on full-band
audio, as shown in Table 3. System F0 shares the same ar-
chitecture with the basic MelGAN in [20]. With generator
pre-training, we find system F1 outperforms the basic Mel-
GAN (F0) with a small increase in MOS. Besides, we find

www.data-baker.com/open_source.html


Table 3: The MOS results for different improvements on
MelGAN (95% confidence intervals). F in Index means Full-
band.

Index Model MOS
F0 MelGAN [20] 3.98±0.04
F1 + Pretrain G 4.04±0.03
F2 + Lmr stft(G) 4.06±0.04
F3 + Deepen ResStack 4.35±0.05

the model converges much faster with pre-training – train-
ing time is shortened to about two-third of basic MelGAN.
When we further substitute the feature matching loss with the
multi-resolution STFT loss, quality is further improved ac-
cording to system F2. Another bonus is that the training time
is further shortened to about one-third of basic MelGAN. Fi-
nally, by increasing the receptive field of system F2 to become
system F3, we obtain a big improvement with the best MOS
among all the systems. From the results, we can conclude that
the proposed tricks about pre-training, multi-resolution STFT
loss, and large receptive field are effective to achieve better
quality and training stability. The listeners can tell audible
artifacts such as jitter and metallic sounds in basic MelGAN
(F0), while these artifacts seldomly appear in the improved
versions, especially in system F3.

Training strategy for MB-MelGAN. Table 4 shows
the MOS results of the proposed MB-MelGAN. As previous
evaluation shows the advantages of our architecture on the
full-band version, in the multi-band version (MB-MelGAN),
we follow the same architecture and tricks used in system
F3. Firstly, we only use the multi-resolution STFT loss on
the full-band waveform that is obtained from sub-band wave-
forms through the synthesis filter bank. We find this system,
named M1, obtains a MOS of 4.22. We also notice that
the introduction of multi-band processing lead to about 1/2
training time reduction as compared with the full-band mod-
els. We further apply the multi-resolution STFT loss directly
on the predicted sub-band waveforms in system M2. The
result shows that combining the sub- and full-band multi-
resolution STFT losses is helpful to improve the quality of
MB-MelGAN, leading to a big MOS gain. As an extra bonus,
such combination can also improve training stability, leading
to faster model convergence.

We notice that the final multi-band version (M2 in Ta-
ble 4) has comparable high MOS with the improved full-band
version (F3 in Table 3). We also trained multi-speaker version
and 24KHz version of the proposed MB-MelGAN and evalu-
ated the generation ability to unseen speakers as well. Infor-
mal testing shows the quality is pretty good. More samples
can be found at: https://yanggeng1995.github.
io/demo.

Complexity. We also evaluated the model size, gen-
eration complexity and efficiency, which are summarized in
Table 5. Note that all the RTF values are measured on an

Table 4: The MOS results for two training strategies on MB-
MelGAN (95% confidence intervals). M stands for multi-
band.

Index Model Loss MOS
M1 MB-MelGAN Lfull (Eq. (7)) 4.22±0.04
M2 MB-MelGAN Lfull + Lsub (Eq. (9)) 4.34±0.03

Table 5: Model complexity.

Index Model GFLOPS #Paras. (M) RTF
F0 MelGAN [20] 5.85 4.27 0.2
F3 FB-MelGAN 7.60 4.87 0.22
M2 MB-MelGAN 0.95 1.91 0.03

Intel Xeon CPU E5-2630v3 using our PyTorch implementa-
tion without any hardware optimization. Our FB-MelGAN,
indexed with F3, has a small noticeable increase in parame-
ter size, computation complexity and real-time factor, mainly
due to the enlargement of the receptive field. But its speech
generation quality outperforms the basic MelGAN by a large
margin (4.35 vs. 3.98 in MOS) according to Table 3. As for
the proposed MB-MelGAN, we find it significantly decreases
the model complexity, which generates speech about 7 times
faster than basic MelGAN and FB-MelGAN. The most im-
pressive conclusion is that MB-MelGAN retains the genera-
tion performance with a much smaller architecture and much
better RTF.

Table 6: The MOS results for TTS (95% confidence inter-
vals).

TTS Model Index MOS

Tacotron2
MelGAN [20] F0 3.87±0.06
FB-MelGAN F3 4.18±0.05
MB-MelGAN M2 4.22±0.04
Recording 4.58±0.03

Text-to-Speech. In order to verify the effectiveness of
the improved MelGAN as a vocoder for the text-to-speech
(TTS) task, we finally combined the MelGAN vocoder with a
Tacotron2-based [26] acoustic model trained using the same
training set. The Tacotron2 model takes syllable sequence
with tone index and prosodic boundaries as input and outputs
predicted mel-spectragrams which are subsequently fed into
the MelGAN vocoder to produce waveform. Table 6 sum-
marizes the MOS values for the synthesized 20 testing sen-
tences. The results indicate that the improved versions out-
perform the basic MelGAN by a large margin in the TTS task
and the quality of the synthesized speech is the closest to the
real recordings. Listeners can tell more artifacts (e.g., jitter
and metallic effects) from the synthesized samples by the ba-
sic MelGAN, which is more severe in TTS as there exists in-
evitable mismatch between the predicted and the ground truth
mel-spectragrams. On the contrast, the improved versions al-
leviate most of the artifacts with better listening quality.

https://yanggeng1995.github.io/demo
https://yanggeng1995.github.io/demo


4. CONCLUSION

This paper first presents some important improvements to the
original MelGAN neural vocoder, which leads to significant
quality improvement in speech generation, and further pro-
poses a smaller and faster version of MelGAN using multi-
band processing, which retains the same level of audio qual-
ity but runs 7 times faster. Text-to-speech experiments have
also justified our proposed improvements. In the future, we
will continue to fill the quality gap between the synthesized
speech and the real human speech by improving GAN-liked
neural vocoders.
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